Roll No.:	
Total No. of Questions : 9 1	1 Total No. of Pages :

67007-N

M.C.A. (Regular) 1st Semester (2 Year Programme) Examination, April-2021

(w.e.f. 2020-2021)

DIGITAL DESIGN AND COMPUTER ARCHITECTURE

Paper-20MCA21C4

Time: Three Hours]

[Maximum Marks : 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

- Note: Question No. 1 is compulsory with eight parts, of 2 marks each. In addition to Q. No. 1, attempt four more questions by selecting at least one question from each Unit. All questions carry equal marks.
- (i) What do you mean by radix of the number system? Mention different components of a number in any number system.

(1) **RD-708** P.T.O.

- (ii) What is the importance of Alphanumeric Codes in Digital Processing?
- (iii) Write down the procedure (various steps) to design a combinational circuit.
- (iv) What important role does Excitation table plays in designing the digital circuit ?
- (v) Differentiate between instruction code and operation code. https://www.mdustudy.com
- (vi) List down various applications of superscalar architecture (any four).
- (vii) Why usage of interface becomes mandatory while working with peripherals?
- (viii) Discuss how IOP can be used to improvise the efficiency of a computer.

Unit-I

- 2. (i) Perform the following subtractions using 2's complement method :
 - (a) 0011.1001-0001.1110
 - (b) 01100-00011
 - (ii) Explain in detail the register configuration required for the Floating Point arithmetic Operations.
- (i) What do you mean by realization of a digital circuit? Realize the following logical expression by using only NAND gates:

AB' + A'B

67007-N_700 (2)

RD-708

67007-N_700

(ii) Define SOP and POS simplification methods and simplify the following Boolean Function in both SOP and POS format:

 $f(a, b, c, d) = \Sigma(0, 1, 2, 5, 8, 9, 10)$

Unit-II

- (i) Elaborate the working of Parity Generator/ Comparator with the help of labelled diagram.
 - (ii) How edge triggered flip-flops work differently from level triggered flip-flops?
- 5. (i) Explain the working and importance of shift registers. Also discuss any two applications of shift registers.
 - (ii) What are the specific features of a Binary Counter? Explain how a binary counter works with a parallel load with an apt diagram.

Unit-Ⅲ

- (i) Demonstrate the concept of direct and indirect address with the help of appropriate example and diagram.
 - (ii) Explain the following in the context of RTL: Selective Clear, Selective Complement, Mask and Selective Set.

(3)

67007-N_700

RD-708 P.T.O.

- (i) Define microprogram and microinstruction. Discuss how computer instruction code is mapped into microinstruction code.
 - (ii) By using different performance evaluators, compare the performance of Scalar and Pipeline architecture.

Unit-IV

- (i) Demonstrate how by using Strobe and Handshaking can be helpful in transferring data asynchronously (with the help diagram). https://www.mdustudy.com
 - (ii) How interrupt initiated I/O is more efficient than programmed I/O?
- (i) How pipeline architecture supports parallel processing? Explain the working and implementation of arithmetic pipeline to support your answer.
 - (ii) Detail out how serial communication is carried out while using character oriented protocol for transferring data in computer.

67007-N_700 (4) **RD-708**